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Motivation

A profit-maximizing firm may ignore fair ML.

Firm-side
fair learning

Higher error,
lower profits

Adoption by
companies

If a company has no incentive to be fair,
but trains on user data, what can a minority do?
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Algorithmic Collective Action

A firm trains a classifier h on user-data and a α-sized
group of users collaborate to modify their data.

To make a classifier ignore a signal g

S (α) = P0 [h (g (x)) = h (x)] ,

the collective can apply a relabeling strategy [1]

y → argmax
y′∈{0,1}

P0
(
y′|g (x)

)
.

Setting the signal as a group counterfactual

g (x) = xA←0
leads towards counterfactual fairness, in some cases
promoting other forms of group fairness [2].
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Approximating the Counterfactuals

Counterfactuals are generally unknown. We propose methods to
estimate the likelihood s of a positive counterfactual label.
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Distance of majority k-NN
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The collective sorts the negative-labeled members by s and the
top M flip their labels.

Importance of Collective Size

20–30% of the minority attains the least fairness violation.
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Required Number of Label Flips

Our methods require fewer flips than other relabeling baselines.
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Restricting Access to Data

Limiting the collective’s access to only few samples from the
majority data has small effect on the Pareto frontiers.
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Comparison With Firm-Side Methods

Unlike firm-side FARE [3] and calibrated equalized odds [4],

a minority cannot get perfect fairness, but adds smaller error.
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